SPEECH EMOTION RECOGNITION USING DEEP LEARNING

نویسندگان

چکیده

Speech Emotion Recognition is a present topic of the research since it has wide range application. SER vital part effective human interaction in speech processing. recognition domain that growing rapidly recent years. Unlike humans, machines deficit potential to perceive and express emotions. But improvisation human-computer can be done by automated thereby turn down need mediation time. The primary goal improve man-machine interface. This paper covers Deep Learning train model, Librosa classify audio data. In deep learning CNN used model based on frequency parameter. also contains study various emotion methods like, happy, sad, angry, disgust, surprise fear.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Efficient Emotion Recognition from Speech Using Deep Learning on Spectrograms

We present a new implementation of emotion recognition from the para-lingual information in the speech, based on a deep neural network, applied directly to spectrograms. This new method achieves higher recognition accuracy compared to previously published results, while also limiting the latency. It processes the speech input in smaller segments – up to 3 seconds, and splits a longer input into...

متن کامل

Emotion Recognition Using Multimodal Deep Learning

To enhance the performance of affective models and reduce the cost of acquiring physiological signals for real-world applications, we adopt multimodal deep learning approach to construct affective models with SEED and DEAP datasets to recognize different kinds of emotions. We demonstrate that high level representation features extracted by the Bimodal Deep AutoEncoder (BDAE) are effective for e...

متن کامل

Spoken Emotion Recognition Using Deep Learning

Spoken emotion recognition is a multidisciplinary research area that has received increasing attention over the last few years. In this paper, restricted Boltzmann machines and deep belief networks are used to classify emotions in speech. The motivation lies in the recent success reported using these alternative techniques in speech processing and speech recognition. This classifier is compared...

متن کامل

Facial Emotion Recognition using Deep Learning

Facial emotion recognition is one of the most important cognitive functions that our brain performs quite efficiently. State of the art facial emotion recognition techniques are mostly performance driven and do not consider the cognitive relevance of the model. This project is an attempt to look at the task of emotion recognition using deep belief networks which is cognitively very appealing an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International research journal of computer science

سال: 2022

ISSN: ['2393-9842']

DOI: https://doi.org/10.26562/irjcs.2022.v0908.22